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ABSTRACT 

In this study greenhouse tomato production was investigated from energy consumption 

and greenhouse gas (GHG) emission point of views. Moreover, artificial neural networks 

(ANNs) and adaptive neuro-fuzzy inference systems (ANFIS) were employed to model 

energy consumption for greenhouse tomato production. Total energy input and output 

were calculated as 1,316.14 and 281.1 GJ ha-1. Among the all energy inputs, natural gas 

and electricity had the most significant contribution to the total energy input. Evaluations 

of GHG emission illustrated that the total GHG emission was estimated at 34,758.11 kg 

CO2eq ha-1 and, among all the inputs, electricity played the most important role, followed 

by natural gas. Comparison between ANN and ANFIS models showed that, due to 

employing fuzzy rules, the ANFIS-based models could model output energy more 

accurately than ANN models. Accordingly, correlation coefficient (R), Root Mean Square 

Error (RMSE) and Mean Absolute Percentage Error (MAPE) for the best ANFIS 

architecture were calculated as 0.983, 0.025, and 0.149, respectively, while these 

performance parameters for the best ANN model were computed as 0.933, 0.05414, and 

0.279, respectively.  
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INTRODUCTION 

Tomato (Solanum lycopersicum), which is 
originally from America, is now widely 
grown around the world, often in 
greenhouses in cooler areas. Iran is regarded 
as one of the major tomato producers in the 
world. In 2012, Iran ranked sixth among the 
most important tomato producers with total 
production of 6,000,000 million tons (FAO, 

2012). A large share of tomatoes produced 
in Iran is grown in greenhouses. From 2002 
to 2008, areas under greenhouse in Iran 
increased from 3,380 ha to 7,000 ha and the 
share of greenhouse production included: 
vegetables 59.3%, flowers 39.81%, fruits 
0.54% and mushroom 0.35% (Pahlavan et 

al., 2011).  
Agricultural productivity increased 

significantly during 20th century, with 
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mechanization leading to a dramatic rise in 
labor productivity. Improved production 
techniques, intensive use of fertilizers, 
pesticides, and other energy inputs along 
with progress in animal husbandry helped to 
increase yields. However, excessive use of 
these energy inputs has resulted in a variety 
of problems such as global warming and air 
pollution which are the major concerns 
related to the use of fossil energy (Nemecek 
and Kagi, 2007). Energy consumption in 
agricultural production, especially in 
greenhouse production, is so intensive 
because large quantities of energies like 
diesel fuel, machinery, electricity, natural 
gas, etc. are used (Heidari and Omid, 2011). 
Effective energy use and sustainability in 
agricultural production are significantly 
correlated and literature is repeated with 
reports focused on energy consumption in 
agricultural production (Hatirli et al., 2006; 
Tabatabaie et al., 2013; Ozkan et al., 2011; 
Pishgar-Komleh et al., 2012; Mousavi-
Avval et al., 2011; Singh et al., 2002; Omid 
et al., 2011; Nassiri and Singh, 2010).  

Energy modeling is an interesting subject 
for engineers and scientists who are 
concerned with energy production and 
consumption and related environmental 
impacts (Safa and Samarasinghe, 2011). For 
many years, regression analysis has been 
employed as a common modeling technique. 
The main disadvantage of regression 
analysis as a statistical method is that it 
requires some assumptions about the 
functional form (Pahlavan et al., 2012). 
Recently, artificial neural networks (ANNs) 
and adaptive neuro-fuzzy inference systems 
(ANFIS) are two main artificial intelligences 
(AI) modeling techniques which are widely 
applied tools because they are more efficient 
and less time consuming in modeling 
complex systems compared to other 
mathematical models such as regression 
(Pahlavan et al., 2012). The advantage of AI 
over statistical models is reported by many 
researchers (Lette et al., 1994 ; 
Benediktsson et al., 1990; Razi and 
Athappilly 2005). Kaul et al. (2005) 
employed ANN for predicting corn and 

soybean yield. In another study conducted 
by Lim et al. (2007), ANN approach was 
used for prediction of ammonia emission 
from field-applied manure. Naderloo et al. 
(2012) used ANFIS models for predicting 
crop yield based on different energy inputs.  

On the basis of the foregoing discussion, 
the main objectives of the present study 
were to: (a) calculate energy input and 
output in greenhouse tomato production; (b) 
determine GHG emission related to the 
tomato production, and (c) predict output 
energy on the basis of energy inputs using 
AI. Accordingly, several ANN and ANFIS 
models were developed and their prediction 
accuracy was evaluated using quality 
parameters.  

MATERIALS AND METHODS 

 Data Collection and Methods 

Isfahan province is one of the major 
greenhouse production regions in Iran. This 
province is located in central Iran within 30° 
43' and 34° 27' north latitude and 49° 36' and 
55° 31' east longitude. The rural areas of 
Fereydonshahr city was selected for 
sampling and data was collected in the 
period of 2011-2013. To determine the 
required sample size, random sampling 
method was employed using the following 
formula (Mousavi-Avval et al., 2011): 

)()1( 222

22

tsdN

tsN
n

×+−

××
=    (1) 

Where, n presents the required sample 
size, N is the number of greenhouse tomato 
producers in the studied area, s is the 
standard deviation in the pre-tested data, t 
presents t value at 95% confidence limit 
(1.96) and d is the acceptable error which 
was defined to be 5 for 95% confidence 
(Mousavi-Avval et al., 2011; Pahlavan et 

al., 2012). Applying the mentioned formula, 
the sample size was determined to be 78 
tomato producers who were randomly 
selected and interviewed using face-to-face 
interviews.  
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Table 1.  Energy coefficients of different inputs and output. 

 
Inputs 

 
Unit 

Energy coefficients 
(GJ unit-1) 

 
Reference 

A. Inputs    
1. Machinery    
Tractor and self-propelled Kg yr a  9-10× 10-3 (Kitani, 1999) 
Stationary equipment Kg yr a 8-10× 10-3 (Kitani, 1999) 
Implement and machinery Kg yr a 6-8× 10-3 (Kitani, 1999) 
2. Human labor h 1.96× 10-3 (Pahlavan et al., 2012) 
3. Natural gas m3 49.5× 10-3 (Kitani, 1999) 
4. Diesel fuel L 47.8× 10-3 (Kitani, 1999) 
5. Biocide     
Herbicide kg 85× 10-3 (Kitani, 1999) 
Fungicide kg 295× 10-3 (Kitani, 1999) 
Insecticide kg 115× 10-3 (Kitani, 1999) 
6. Fertilizers    
Nitrogen (N) kg 66.14× 10-3 (Omid et al., 2011) 
Phosphate (P2O5) kg 12.44× 10-3 (Omid et al., 2011) 
Potassium (K2O) kg 11.15× 10-3 (Omid et al., 2011) 
7. Micro (M) kg 120× 10-3 (Pahlavan et al., 2012) 
8. FYM kg 0.3× 10-3 (Pahlavan et al., 2012) 
9. Water for irrigation m3 1.02× 10-3 (Omid et al., 2011) 
10. Electricity  kWh 11.93× 10-3 (Singh et al., 2002) 
11. Seeds kg 10-3 (Hatirli et al., 2006) 
B. Out put    
1. Tomato kg 0.8× 10-3 (Hatirli et al., 2006) 

a The economic life of machine (year). 
 

The main inputs used during production 
season included human labor, chemical 
fertilizers, farmyard manure (FYM), 
machinery, diesel fuel, electricity, biocides, 
natural gas, irrigation water and seeds. 
Tomatoes produced were chosen as the only 
output energy. All input materials have 
different measuring unit. To train artificial-
based model, these inputs were converted to 
their energy equivalents using energy 
coefficients (Table 1). Then, input energies 
were selected as inputs of the models and 
the output energy was chosen as the only 
output of the model. To calculate Machinery 
energy, all greenhouse holders were asked 
about the types and weights of the applied 
machinery in different operations. 
Furthermore the machinery energy was 
computed using following formula (Kitani, 
1999): 

 
aTC

ELG
ME =     (2) 

Where, ‘ME’ is the machine energy (MJ 
ha-1), ‘G’ the weight of machine (kg), ‘E’ the 
production energy of machine (MJ kg-1 yr-1) 
that is shown in Table 1 , ‘L’ the useful life 
of machine (year), ‘T’ the economic life of 
machinery (h) and ‘Ca’ the effective field 
capacity (ha h-1) (Pishgar-Komleh et al., 
2012; Khoshnevisan et al., 2015).  

To investigate the different forms of 
energies that were used in greenhouse 
tomato production, the energy inputs were 
divided into direct and indirect or renewable 
and nonrenewable forms. Human labor, 
diesel fuel, electricity, natural gas, and 
irrigation water belonged to direct energy 
sources, while the sources of indirect energy 
consisted of FYM, chemical fertilizers, 
biocides and machinery. Also, renewable 
energy included human labor, FYM, and 
irrigation water and nonrenewable energy 
sources consisted of electricity, natural gas, 
machinery, diesel fuel, biocides, and 
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Table 2. Greenhouse gas (GHG) emission coefficients of agricultural inputs. 

Inputs Unit GHG coefficient a Reference 
Machinery MJ 0.071 (Pishgar-Komleh et al., 2012) 
Diesel fuel L 2.76 (Pishgar-Komleh et al., 2012) 
Chemical fertilizers    
Nitrogen (N) kg 1.3 (Lal, 2004) 
Phosphate (P2O5) kg 0.2 (Lal, 2004) 
Potassium (K2O) kg 0.2 (Lal, 2004) 
Biocide    
Herbicide kg 6.3 (Lal, 2004) 
Insecticide kg 5.1 (Lal, 2004) 
Fungicide kg 3.9 (Lal, 2004) 
Natural gas m3 0.85 (Lal, 2004) 
Electricity b kWh 0.608 (Pishgar-Komleh et al., 2012) 

a
 kg CO2eq unit-1, b The power plant burns LNG. 

 

chemical fertilizers (Rafiee et al., 2010).  
Production, storage, distribution of 

agricultural inputs and their applications 
with agricultural machinery lead to 
combustion of fossil fuel and use of energy 
from alternative sources, which emit CO2 
and other greenhouse gases (GHGs) into the 
atmosphere (Lal, 2004). In order to convert 
energy inputs into their carbon emission 
equivalent, carbon emission coefficients 
were used (Table 2). GHG emissions were 
computed by multiplying the amount of 
energy inputs by their corresponding carbon 
emission coefficients.  

Development of ANN Models 

ANNs are data-processing systems 
inspired by biological neural system and are 
used to solve a wide variety of problems in 
science and engineering, particularly for 
some areas where the conventional modeling 
methods fail (Najafi et al., 2009). The 
principles of ANN are well documented in 
the literature, therefore, no more details will 
be presented here.  

Several training algorithms can be 
employed in evaluating the network, of 
which back-propagation (BP) and 
Levenberg–Marquardt (LM) are the most 
important ones. Although BP algorithm is 
very popular, in comparison with LM 
training algorithm, it is often too slow for 

practical problems because it needs small 
learning rates for stable learning (Ghobadian 
et al., 2009). Back-propagation training 
algorithms gradient descent and gradient 
descent with momentum along with LM 
algorithm were practiced in order to find the 
best ANN model. Also, several hidden 
layers with distinct neurons in each one were 
evaluated to find the best network 
architecture. Matlab's M-file version 
7.14.0.739 (R2012a), were used and 
different ANN programs were written to 
find the best ANN topology.  

 Adaptive Neuro-Fuzzy Inference 

System  

ANFIS consists of if–else rules and input–
output data couples of fuzzy and it uses 
neural network’s learning algorithms for 
training (Bektas Ekici and Aksoy, 2011; 
Petković et al., 2014). ANFIS is a 
combination of ANN and fuzzy-logic model 
which gives the ability of modeling 
uncertain and imprecise data (Liu and Ling, 
2003; Shamshirband et al., 2010).  

Propagation and hybrid, which are 
composed of back-propagation learning 
algorithm and least square method, are 
regarded as two learning methods generally 
used in ANFIS models to specify the 
relationship between input and output and to 
determine optimized distribution of MFs 
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Figure 1. Adaptive neuro-fuzzy inference system structure. 

 

(Naderloo et al., 2012; Shamshirband et al., 
2014). Each ANFIS network contains five 
layers as shown in Figure 1. The basic 
structure of the type of fuzzy inference system 
is a model that maps input characteristics to 
input MFs, input MF to rules, rules to a set of 
output characteristics, output characteristics to 
output MFs, and the output MF to a single-
valued output or a decision associated with the 
output.  

The main limitation of developing ANFIS 
networks relates to the number of input 
variables because when the number of ANFIS 
inputs exceeds five, network fails due to the 
increased computational time and rule 
numbers (Naderloo et al., 2012). In this study, 
the number of input variables was ten 
including labor, machinery, diesel fuel, 
chemical fertilizers, biocides, irrigation water, 
natural gas, electricity, FYM, and seeds. To 
find the best ANFIS architecture, two main 
topologies were developed and their results 
were compared.  

In the first topology, as illustrated in Figure 
2, ten energy inputs were divided into five 
groups and each group entered to one ANFIS 
network and, accordingly, the outputs of 
ANFIS 1 and 2 were selected as inputs for 
ANFIS 6 and predicted values by ANFIS 3 to 
5 were chosen as inputs for ANFIS 7. Finally, 
predicted values 6 and 7 were entered into 

ANFIS 8 and the output energy was 
forecasted.  

In the second ANFIS topology, seven 
ANFIS networks were developed to predict 
output energy. Accordingly, ten inputs were 
clustered into four groups and each one was 
selected as input for ANFIS networks 1 to 4 
(Figure 3). The output energy was forecasted 
by ANFIS 7 which was composed of predicted 
values 5 and 6.  

In order to create FIS, MATLAB's M-file 
version 7.14.0.739 (R2012a) was employed to 
develop ANFIS models. 

 Performance Evaluation of ANFIS and 

ANN Models 

To evaluate the accuracy of the ANN and 
ANFIS models, different criteria were used 
including correlation coefficient (R), root 
mean square error (RMSE), and mean 
absolute percentage error (MAPE). The 
performances of the models were assessed 
and compared to find the best prediction 
methods. The following formulas were 
employed: 
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Figure 2. The first topology of ANFIS model to predict tomato yield. 
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Figure 3. The second topology of ANFIS model to predict tomato yield. 
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Where, Pi and Ai are respective 
predicted and actual yield for the ith 
farmer and n is the number of the points 
in the data set (Khoshnevisan et al. 2014).  

RESULTS AND DISCUSSION 

 Input-Output Energy Analysis 

Energy inputs utilized by different 
operations during greenhouse tomato 
production in the studied area are 
summarized in Table 3. The results show 
that the total energy input was calculated as 
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Table 3. Energy inputs and output for greenhouse tomato production (GJ ha-1). 

Item Total energy equivalent 
(GJ ha-1) 

Percentage 
(%) 

SDa 

A. inputs    
Machinery 1.16 0.1 0.09 
Labor 6.16 0.5 1.55 
Diesel fuel 8.26 0.6 1.67 
Natural gas 853.17 66 126.22 
Electricity 350.66 27 88.67 
Chemical fertilizers    
Nitrogen (N) 22.74 1.7 4.97 
Phosphate (P2O5) 5.56 0.4 1.22 
Potassium(K2O) 4.3 0.3 0.94 
Micro nutrients 20.37 1.6 5.32 
FYM 4.51 0.3 1.42 
Biocide 15.54 1.2 4.71 
Water for irrigation 3.45 0.3 0.84 
Seeds 10-4 0.0 0.00 
Total energy input 1316.14 100  
B. output    
Tomato 218.1  31.11 
a
 Indicates standard deviation for energy inputs (GJ ha-1). 

 

1,316.1 GJ ha-1. Among the all energy 
inputs, natural gas with amount of 853.2 GJ 
ha-1 was the key input, followed by 
electricity and chemical fertilizers. Natural 
gas and electricity were, respectively, used 
by heaters and electric motors; this high 
contribution of natural gas and electricity 
showed the low efficiency of heating 
systems and electric pumps employed in 
production process. In a study conducted by 
Pahlavan et al. (2012), it was illustrated that 
diesel fuel and electricity were the most 
consumed energy inputs in greenhouse basil 
production. They emphasized that the diesel 
fuel was used by heating systems in the 
greenhouses. The same results were reported 
by Hatirli et al. (2006), Ozkan et al. (2011), 
Canakci and Akinci (2006) and Heidari et 

al. (2012) for different greenhouse crops 
production. 

Direct and indirect energies were 
calculated as 1,240.8 and 75.25 GJ ha-1, 
respectively, while renewable and 
nonrenewable energies were calculated as 
14.21 and 1,301.93 GJ ha-1, respectively. 
The researchers, who analyzed input-output 
energy in different greenhouse production in 

Iran, reported that the share of nonrenewable 
energy in the total energy input was so 
substantial (Banaeian et al., 2011; Pahlavan 
et al., 2011; Omid et al., 2011).  

Improving the energy use efficiency of 
heating systems by employing more efficient 
heaters along with using thermostat in 
appropriate places in the greenhouses can 
help to reduce the high consumption of 
natural gas energy. Also, based on the high 
potential for using solar energy during the 
spring and summer, applying technology for 
creating electricity from solar energy can 
reduce the high consumption of 
nonrenewable energy in the studied area.  

 Analysis of GHG Emission  

The amount of GHG emissions from 
different sources are shown in Table 4. 
The total emission was estimated as 
34,758.1 kg CO2eq ha-1. The last column 
of Table 4 shows the standard deviation 
for each energy source. As can be 
observed, the amount of total emission 
varies from 21,769.7 to 42,167.6 CO2eq 
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Figure 4. Contribution of energy inputs to GHG emission. 

Table 4. Greenhouse gas emissions of inputs in tomato production. 

Item GHG emission 

(kg CO2eq ha-1) 
Max Min SD 

Diesel 482.37 625.28 199.96 96.53 
Chemical fertilizer     
N 456.68 693.33 315.71 97.78 
P2O5 91.34 138.67 63.14 19.56 
K2O 78.99 120.6 53.71 16.95 
Biocide 501.27 715.20 303.6 91.24 
Machinery 83.48 96.66 65.42 6.2 
Electricity 18198.81 26627.14 7455.6 4518.83 
Natural gas 14865.17 18608.2 11168.15 2167.47 
Total emission 34758.11 42167.57 21769.67 4256.97 

 

ha-1 on the basis of different amount of 
energy usage.  

Figure 4 shows the contribution of 
energy inputs to GHG emission for 
greenhouse tomato production in the 
studied area. The results revealed that 
electricity with a share of 52.36% had a 
significant effect on GHG emission, 
followed by natural gas (42.77%). As 
mentioned above (Table 3), natural gas 
energy was the key factor from energy 
consumption point of view (2.5 times 
more than electricity energy), while the 
contribution of electricity to GHG 
emission was more noticeable, however, 
its energy equivalent was lower than that 
of natural gas. Accordingly, the use of 
natural gas and electrical energy should be 
reduced simultaneously.  

ANN Models: Evaluation and Error 

Analysis 

Several ANN models with different 
topologies and distinct learning algorithms 
were trained and developed and their 
performance was evaluated to find the best 
network. A variety of activation functions 
including logistic sigmoid, tangent sigmoid, 
as well as purelin transfer functions along 
with different number of hidden layers were 
practiced employing different number of 
neurons in each hidden layer. Performance 
of various ANN topologies for predicting 
output energy is summarized in Table 5. The 
best network consisted of one input layer 
with 10 neurons, three hidden layers with 
20, 17 and 9 neurons in each one, and one 
output layer with one neuron. Tangent 
sigmoid transfer function was employed in 
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Table 5. Performance of various ANN topologies for predicting output energy. 

Activation 
function 

Training 
algorithm 

Neurons in 
hidden layer 

R RMSE MAPE 

tan/lin Trainlm 22 0.923 0.0532 0.282 
sig/lin Trainlm 30-12 0.927 0.0538 0.291 
tan/lin Trainlm 20-17-9 0.933 0.0514 0.279 

sig/lin Traingd 18 0.931 0.0529 0.281 
tan/lin Traingd 16-25 0.918 0.0665 0.312 
tan/lin Traingd 32-10-19 0.924 0.0533 0.288 
tan/lin Traingdm 29 0.917 0.0635 0.298 
sig/lin Traingdm 12-32 0.929 0.0522 0.284 
tan/lin Traingdm 35-20-22 0.923 0.519 0.288 

 
 

hidden layers and the output layer included 
purelin transfer function. As highlighted in 
Table 5, LM training algorithm produced the 
best result. R, RMSE, and MAPE for the 
best network architecture were calculated as, 
respectively, 0.933, 0.0514, and 0.279, 
which show that the network can 
appropriately predict energy output with 
respect to energy inputs.  

Evaluation of ANFIS Models 

Two main ANFIS architectures as well as 
four important modifications were made in 
order to find the best ANFIS topology. The 
modifications included the type of input and 
output MFs, the number of input and output 
MFs, learning algorithm, and the number of 
epochs.  

The best results for the first ANFIS 
topology (see Figure 2) are illustrated in 
Table 6. As can be seen, hybrid learning 
method yielded the best result. Several 
studies, which have been conducted using 
ANFIS models, showed that hybrid method 
can produce better results than propagation 
learning algorithm (Bektas Ekici and Aksoy, 
2011; Bagheri et al., 2012; Ho and Tsai, 
2011). For the best ANFIS architecture, 
Gbell and linear MFs were selected for input 
and output MFs, respectively.  

One of the most necessary modifications 
relates to the number of MFs. The number of 
MFs determines the total number of 
parameters in the ANFIS network, which 

should be fewer than the number of training 
data pairs. The ANFIS information of the 
first topology is summarized in Table 7. As 
can be seen, the number of training data 
pairs was 58, therefore, the number of MFs 
was chosen as 4,3 where two inputs entered 
into the model (ANFIS 1 to 6 and 8) and 
2,2,2 where three inputs entered into the 
model (ANFIS 7). Accordingly, the total 
number of parameters was calculated as 57 
and 50, which show the accuracy of the 
model.  

The characteristics of the best structure of 
the second ANFIS architecture (see Figure 
3) are demonstrated in Table 8. As can be 
seen, seven ANFIS networks were built to 
predict the output energy. The combination 
of Gbell and linear MFs as well as hybrid 
learning method yielded the best results. For 
ANFIS 1 and 2, where three input 
parameters entered into the network, the 
number of MFs was assessed as 2,2,2, while 
for other networks it was selected as 4,3. 

Comparison between the two ANFIS 
topologies showed that both ANFIS 
architectures were able to predict the output 
energy accurately. Cross-correlation 
between predicted and observed output 
energies for the first and second ANFIS 
topologies are shown in Figure 5. MAPE for 
the first and second ANFIS models were 
calculated as 0.147 and 0.151, respectively, 
which show that the second ANFIS model 
can predict output energy with more 
accuracy.  
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Table 6. The characteristics of the best structure of the third ANFIS architecture. 

Item Type of MF  Number of MF Learning 
method 

R RMSE MAPE 
(%) Input Output Input Epoch 

ANFIS1 Gbell Linear  4,3 40 Hybrid 0.76 0.091 0.523 
ANFIS2 Gbell Linear  4,3 40 Hybrid 0.809 0.081 0.468 
ANFIS3 Gbell Linear  4,3 40 Hybrid 0.716 0.096 0.598 
ANFIS4 Gbell Linear  4,3 40 Hybrid 0.68 0.102 0.641 
ANFIS5 Gbell Linear  4,3 40 Hybrid 0.776 0.087 0.501 
ANFIS6 Gbell Linear  4,3 40 Hybrid 0.93 0.051 0.304 
ANFIS7 Gbell Linear  2,2,2 40 Hybrid 0.942 0.046 0.278 
ANFIS8 Gbell Linear  4,3 40 Hybrid 0.982 0.026 0.151 

 

Table 7. ANFIS information of the first topology. 

ANFIS info ANFIS 1, 2, 3, 4, 5, 6 and 8 ANFIS 7 

Number of nodes 43 34 

Number of linear parameters 36 32 

Number of nonlinear parameters 21 18 

Total number of parameters 57 50 

Number of training data pairs 58 58 

Number of checking data pairs 20 20 

Number of fuzzy rules 12 8 

 
Table 8. The characteristics of the best structure of the second ANFIS architecture. 

Item Type of MF  Number of MF Learning method R RMSE MAPE 
(%) Input Output Input Epoch 

ANFIS1 Gbell Linear  2,2,2 40 Hybrid 0.774 0.088 0.506 
ANFIS2 Gbell Linear  2,2,2 40 Hybrid 0.763 0.091 0.529 
ANFIS3 Gbell Linear  4,3 40 Hybrid 0.657 0.106 0.684 
ANFIS4 Gbell Linear  4,3 40 Hybrid 0.763 0.089 0.57 
ANFIS5 Gbell Linear  4,3 40 Hybrid 0.946 0.045 0.256 
ANFIS6 Gbell Linear  4,3 40 Hybrid 0.93 0.051 0.307 
ANFIS7 Gbell Linear  4,3 40 Hybrid 0.983 0.025 0.149 

 

Figure 5. Cross-correlation between predicted and observed output energy for: (a) First ANFIS 
topology, and (b) Second ANFIS topology. 
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Comparison of ANN and ANFIS Models 

The ANFIS models are composed of both 
ANN and fuzzy-logic model, therefore, they 
have the ability of working with uncertain 
noisy and imprecise data, especially those 
related in agricultural process, where data 
are generally inconstant and imprecise. 
Comparing the results obtained from ANN 
and ANFIS models revealed that ANFIS 
models were able to predict output energy 
more accurately than ANN models due to 
employing fuzzy rules. In a study carried out 
by Khashei-Siuki et al. (2011), ANFIS and 
ANN were exercised to predict dry-land 
wheat yield. They reported that ANFIS 
consistently produced better results than 
ANN.  

CONCLUSION 

 The input-output energy analysis in 
greenhouse tomato production in Isfahan 
province showed that the total energy input 
was 1,316.1 GJ ha-1 while the total energy 
output was 281.1 GJ ha-1, which revealed 
that the energy use efficiency in the 
surveyed area was very low. Natural gas and 
electricity held the first and second rank 
among all energy inputs. Evaluations of 
GHG emission showed that the total GHG 
emission was about 34758.1 kg CO2eq ha-1 
and, among all input, electricity played the 
most important role, followed by natural 
gas. The following methods and tips can 
help greenhouse holders to improve their 
energy use efficiency. Improvement of 
heating systems, applying more efficient 
electrical pumps for irrigation systems, 
supplying electricity from non-fossil 
resources, and providing the possibility of 
storage and application of rainfall water in 
the studied region are highly recommended. 
Deploying a retractable shade/energy curtain 
at night can significantly reduce heat loss by 
providing another insulating layer. 
Moreover, the nylon that was commonly 
used to cover greenhouses was not 
appropriate for winter season and should be 

changed or a thicker nylon or an extra layer 
should be employed in order to minimize the 
loss of heat, which is presently squandered 
due to conduction. Most greenhouse holders 
are still not taking advantage of infrared (IR) 
plastic film on their greenhouses, which 
prevents heat provided by the heating 
system to be lost by conduction, convection, 
and radiation. Drawing a comparison 
between ANN and ANFIS models showed 
that, due to employing fuzzy rules, the 
ANFIS models could forecast output energy 
more accurately than ANN models. 
Accordingly, R, RMSE, and MAPE for the 
best ANFIS architecture were calculated as 
0.983, 0.025, and 0.149, respectively, while 
these performance parameters for the best 
ANN model were computed as 0.933, 
0.05414 and 0.279, respectively. Application 
of these models can help greenhouse holders 
in marketing their crops in advance and 
before the crop is available for selling. 
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عصبي براي مدلسازي انرژي -هاي عصبي مصنوعي و سيستم استنتاج فازيمقايسه شبكه

مطالعه موردي در استان اصفهان -ايمصرفي در توليد گوجه فرنگي گلخانه  

ا.و. و  ،ارو، ن. بدرل انالقبج. ام. اميد،  ب. خوشنويسان، ش. رفيعي، ش. شمشيربند،

  وهابال عبدل

  چكيده

اي مورد اي از منظر انرژي مصرفي و انتشار گازهاي گلخانهفرنگي گلخانهدر اين مطالعه توليد گوجه

عصبي به منظور -هاي عصبي مصنوعي و سيستم استنتاج فازيمطالعه قرار گرفت. همچنين شبكه

 281و  1316مدلسازي انرژي مصرفي مورد استفاده قرار گرفتند. انرژي ورودي و خروجي كل به ترتيب 

هاي ورودي بيشترين سهم از آن گاز طبيعي و الكتريسيته يد. در بين تمامي نهادهگيگاژول محاسبه گرد

 kgاي نشاد داد كه كل گاز منتشر شده برابر بوده است با بوده است. ارزيابي انتشار گازهاي گلخانه

CO2eq ha-1 34758 و الكتريسيته مصرفي بيشترين سهم را در اين انتشار داشته است. مقايسه شبكه-

گيري از قوانين فازي عصبي نشان داد كه انفيس به دليل بهرهي عصبي مصنوعي وسيستم استنتاج فازيها

براي بهترين  MAPEو  R ،RMSEقادر بود تا با دقت بيشتري مدلسازي را انجام دهد. بر اين اساس 

شبكه عصبي محاسبه گرديد در حالي كه اين پارامترها براي  149/0و  025/0، 983/0انفيس به ترتيب 

  . 279/0و  0541/0، 933/0مصنوعي برابر بودند با 

 

 

 [
 D

O
R

: 2
0.

10
01

.1
.1

68
07

07
3.

20
15

.1
7.

1.
11

.2
 ]

 
 [

 D
ow

nl
oa

de
d 

fr
om

 ja
st

.m
od

ar
es

.a
c.

ir
 o

n 
20

24
-0

4-
18

 ]
 

Powered by TCPDF (www.tcpdf.org)

                            14 / 14

https://dorl.net/dor/20.1001.1.16807073.2015.17.1.11.2
https://jast.modares.ac.ir/article-23-4013-en.html
http://www.tcpdf.org

